возрастная группа (8 классы)

Уважаемый участник олимпиады!

Вам предстоит выполнить теоретические (письменные) задания. Время выполнения заданий теоретического тура 4 академических часа (180 минут). Выполнение теоретических (письменных) заданий целесообразно организовать следующим образом:

- не спеша, внимательно прочитайте задание, осознайте суть вопросов и определите, наиболее верный и полный ответ;
- отвечая на теоретический вопрос, обдумайте и сформулируйте конкретный ответ только на поставленный вопрос;
- если Вы отвечаете на задание, связанное с заполнением таблицы или схемы, не старайтесь детализировать информацию, вписывайте только те сведения или данные, которые указаны в вопросе;
- особое внимание обратите на задания, в выполнении которых требуется выразить Ваше мнение с учетом анализа ситуации или поставленной проблемы. Внимательно и вдумчиво определите смысл вопроса и логику ответа (последовательность и точность изложения). Отвечая на вопрос, предлагайте свой вариант решения проблемы, при этом ответ должен быть кратким, но содержать всю необходимую информацию;
- после выполнения всех предложенных заданий еще раз удостоверьтесь в правильности выбранных Вами ответов и решений.

Выполнение заданий целесообразно организовать следующим образом:

- не спеша, внимательно прочитайте задание;
- выделите вопросы задания;
- запишите решение;
- продолжайте, таким образом, работу до завершения выполнения заданий;
- после выполнения всех предложенных заданий еще раз удостоверьтесь в правильности ваших ответов;
- если потребуется корректировка предложенного Вами решения, то неправильный ответ зачеркните, и напишите новый.

Предупреждаем Вас, что:

 при оценке заданий 0 баллов выставляется за неверное решение и в случае, если участником предложено несколько решений и хотя бы одно из них неверное. Задание теоретического тура считается выполненным, если Вы вовремя сдаете его членам жюри.

8 класс (вариант 1) Задачи

Задача 8.1. «2 бесцветных оксида» (Б.Д. Степин, А.Ю. Аликберова)

2 оксида элементов одной и той же группы Периодической системы представляют собой бесцветные кристаллические вещества. У одного из них молекула имеет состав \mathcal{G}_2O_5 , а у другого — \mathcal{G}_4O_{10} . Оба они реагируют с водой, но \mathcal{G}_2O_5 превращается в одну сильную кислоту, а \mathcal{G}_4O_{10} — дает целый «букет» слабых кислот. \mathcal{G}_4O_{10} получается непосредственно при сжигании на воздухе простого твердого вещества красного цвета. \mathcal{G}_2O_5 можно получить только косвенными методами (например, с применением того же \mathcal{G}_4O_{10}) и никогда прямым синтезом из простых веществ.

Вопросы:

- 1. О каких элементах идет речь?
- 2. Составьте эмпирические и структурные формулы оксидов. Какие степени окисления и какую валентность проявляют элементы в этих оксидах?
 - 3. Напишите уравнения реакций взаимодействия оксидов с водой.
 - 4. Составьте уравнения получения этих оксидов.

Максимальный балл -20.

Задача 8.2.

Среди буквенной «абракадабры» отыщите ответы на вопросы. Соединять буквы можно только по горизонтали и вертикали. В скобках указано число букв в правильном ответе. Из оставшихся букв сложите фамилию итальянского ученого, первооткрывателя фундаментального физико-химического закона, названного его именем. Сформулируйте закон итальянского ученого.

И	A	В	A	Л	X	И	C	Л	E	Н	И	E	0	A	3	0	T
													Ю				
О	П	И	A	Л	У	P	Й	0	Д	Φ	0	C	Ф	П	E	P	T
T	0	Γ	К	A	Н	A	Н	И	0	Н	A	P	0	Д	0	И	0

Вопросы:

- 1. Элемент, оксиды которого бывают не только «бурыми», но и «веселящими» (4).
- 2. Атом химического элемента, отличающийся от другого атома того же элемента атомной массой (6).
 - 3. Отрицательно заряженный ион (5).
 - 4. Она дала имя элементу №34 (4).
- 5. Ряд элементов, начинающийся щелочным металлом и заканчивающийся инертным газом (6).
 - 6. Соль алюминиевой кислоты (H_3AlO_3) (8).

- 7. Газ, образующийся при разложении солей аммония (6).
- 8. «Светящийся» элемент (6).
- 9. Ложное учение о превращении неблагородных металлов в благородные посредством фантастического филосовского камня (7).
 - 10. Процесс отдачи электронов (9).
 - 11. Неметалл с металлическим блеском (3).

Максимальный балл -20.

Задача 8.3. «Аквамарин»

Аквамарин — драгоценный ювелирный камень, со стеклянным блеском, голубого цвета. Общая химическая формула $X_3Y_2Z_6Q_{18}$. Элементы X и Y находятся в Па и Ша группах Периодической системы. Элементы Q и Z — самые распространенные в земной коре, а вместе образуют соединение ZQ_2 . Определите формулу аквамарина, если известно, что суммарное число протонов в общей химической формуле $X_3Y_2Z_6Q_{18}$ равно 266, а суммарное число нейтронов — 271.

Максимальный балл -20.

Задача 4. «Термиты»

Термитная смесь (термит) - смесь металлического порошка и оксида железа. У этих составов очень высокая температура горения 2000°— 3500 °С. Они способны гореть без присутствия кислорода, их невозможно потушить водой. Термит обладает чрезвычайно сильным прожигающим действием. Расплавленный термит легко прожигает листы дюраля, стали и железа. При такой температуре растрескивается бетон и кирпич, плавится стекло, горит сталь. Его практически невозможно потушить. Термит поджигают специальным запалом. Применяется в производстве ферросплавов, термитной сварке, и других областях, где требуется высокая температура.

Определите, какой металл использован для приготовления термита состава 31% металла X с оксидом железа (III), если при сжигании 8 г термита образовалась смесь на 0,548 г больше массы сожженного термита.

Максимальный балл -20.

Задача 5.

Ученик 8 класса Петя Иванов решил узнать, сколько мела тратит учитель химии для записей на доске во время урока и какой пигмент используют для его окраски. Он оставил один кусочек мела, желтого цвета, а все остальные спрятал. За время урока был исписан весь кусочек мела. Для определения массы истраченного мела, Петя взял точно такой же кусочек и растворил его в избытке соляной кислоты, при этом выделилось 1,344 л бесцветного газа, а раствор стал желтого цвета и осталось 1,86 г нерастворившегося осадка. Для определения вещества желтого цвета Петя разделил солянокислый раствор на две части. К одной части он добавил гидроксид натрия — выпал студенистый осадок желто-

коричневого цвета, а к другой части добавил роданид калия – раствор окрасился в кроваво-красный цвет.

Вопросы.

- 1. Какой состав имеет мел? Почему в результате растворения остался осадок?
 - 2. Какая масса мела была исписана за урок химии?
- 3. Какое вещество было использовано в качестве пигмента для желтого мела. Напишите проведенные Петей химические реакции.
- 4. Сколько мл 0,36 % соляной кислоты ($\rho = 1$ г/мл) нужно истратить для удаления белого мела со школьных досок за 6 уроков, если на каждом уроке тратится, сколько же мела, сколько на уроке химии.

возрастная группа (9 классы)

Уважаемый участник олимпиады!

Вам предстоит выполнить теоретические (письменные) задания. Время выполнения заданий теоретического тура 5 академических часов (225 минут). Выполнение теоретических (письменных) заданий целесообразно организовать следующим образом:

- не спеша, внимательно прочитайте задание, осознайте суть вопросов и определите, наиболее верный и полный ответ;
- отвечая на теоретический вопрос, обдумайте и сформулируйте конкретный ответ только на поставленный вопрос;
- если Вы отвечаете на задание, связанное с заполнением таблицы или схемы, не старайтесь детализировать информацию, вписывайте только те сведения или данные, которые указаны в вопросе;
- особое внимание обратите на задания, в выполнении которых требуется выразить Ваше мнение с учетом анализа ситуации или поставленной проблемы. Внимательно и вдумчиво определите смысл вопроса и логику ответа (последовательность и точность изложения). Отвечая на вопрос, предлагайте свой вариант решения проблемы, при этом ответ должен быть кратким, но содержать всю необходимую информацию;
- после выполнения всех предложенных заданий еще раз удостоверьтесь в правильности выбранных Вами ответов и решений.

Выполнение заданий целесообразно организовать следующим образом:

- не спеша, внимательно прочитайте задание;
- выделите вопросы задания;
- запишите решение;
- продолжайте, таким образом, работу до завершения выполнения заданий;
- после выполнения всех предложенных заданий еще раз удостоверьтесь в правильности ваших ответов;
- если потребуется корректировка предложенного Вами решения, то неправильный ответ зачеркните, и напишите новый.

Предупреждаем Вас, что:

– при оценке заданий 0 баллов выставляется за неверное решение и в случае, если участником предложено несколько решений и хотя бы одно из них неверное. Задание теоретического тура считается выполненным, если Вы вовремя сдаете его членам жюри.

9 класс (вариант 1) Задачи

Задача 9.1.

Амальгамой называют сплав ртути с другими металлами. Амальгамы щелочных металлов и цинка в химии применяют как восстановители, проявляющие высокую химическую активность.

Амальгаму массой 9,55 г, в состав которой входит цинк и калий, поместили в избыток соляной кислоты. После завершения реакции остался масса которого составила 5,50 г, нерастворимый остаток, выделившегося газа равен 1,57 л (н.у.). Определите состав амальгамы в процентах по массе.

- 1. Запишите уравнения всех протекающих реакций.
- 2. Определите состав амальгамы в процентах по массе.

Максимальный балл -20.

to

Задача 9.2.

Перед вами «химические часы». X – это бинарное соединение

некоторого Э. элемента представляющее себя ИЗ устойчивое на воздухе соединение чёрнокоричневого цвета, встречающееся природе. В Каждая стрелочка обозначает соответствующую химическую реакцию. Над стрелкой указаны все вещества, вступающие реакцию с X. В продуктах реакций может быть разное число соединений, но элемент Э входит в состав только зашифрованных соединений A-D.

Известно, что в реакции **«**3 часа» образуются на следующие продукты:

$$X \xrightarrow{500-600 \, ^{\circ}\text{C}} \text{Mn}_2\text{O}_3 + \text{O}_2$$

Определите элемент $\mathbf{9}$ и соединение X.

- 1. Расшифруйте все соединения A-D, принимая во внимание тот факт, что они расположены в «часах» согласно определённому принципу.
- 2. Поясните, по какому принципу расположены зашифрованные вещества в часах?
- 3. Запишите уравнения шести химических реакций, указанных стрелками.

Задача 9.3.

Предложите уравнения химических реакций, протекающих с соединением X, раствор которого является слабой кислотой. Определите зашифрованное вещество X, запишите его формулу и название. Напишите уравнения химических реакций, подставив необходимые реагенты и продукты реакций, расставьте коэффициенты в уравнениях, принимая во внимание, что количество недостающих веществ ограничено указанными в каждом уравнении пробелами.

1.
$$X + \text{NaOH}_{(pa36)} = \dots + \dots$$

2.
$$X + \dots = H_2[SiF_6] + H_2O$$

3.
$$X + \dots = ClO_3F + H_2O$$

4.
$$X + Na_2O_2 = \dots + \dots$$

5.
$$X + Nb + HNO_{3 \text{ (конц)}} = \dots + \dots + \dots + \dots$$

6.
$$Na_3[AlF_6] + \dots + Al_2(SO_4)_3 + X$$

Максимальный балл -20.

Задача 9.4.

Газ пропан (C_3H_8) объемом 50 л находится в баллоне под давлением при температуре 25^0 С.

Выполните следующие задания:

- 1. Дайте определение понятию «теплота сгорания».
- 2. Напишите термохимические уравнения реакций горения.
- 3. Рассчитайте количество теплоты (Δ H), которое выделится при сжигании газа, если известно, что давление при этом изменится на 0,05 атм.

Теплота (энтальпия) сгорания пропана $\Delta_c H^0_{298} = -2220,03$ кДж/моль.

Уравнение Менделеева – Клапейрона PV = nRT.

1атм = 101,3 к Π а, R=8,314 Дж/(моль град).

Максимальный балл -20.

Задача 9.5.

Моногидрат сульфата тетраамин меди (II) представляет собой синефиолетовые кристаллы.

- 1. Напишите химическую формулу этого соединения.
- 2.К какому классу неорганических соединений относится это вещество?
- 3.С помощью химических реакций докажите наличие каждого структурного компонента (всего четыре), присутствие которых формирует название соединения. Запишите уравнения химических реакций, протекающих при идентификации, и укажите признаки их протекания.

возрастная группа (10 классы) Уважаемый участник олимпиады!

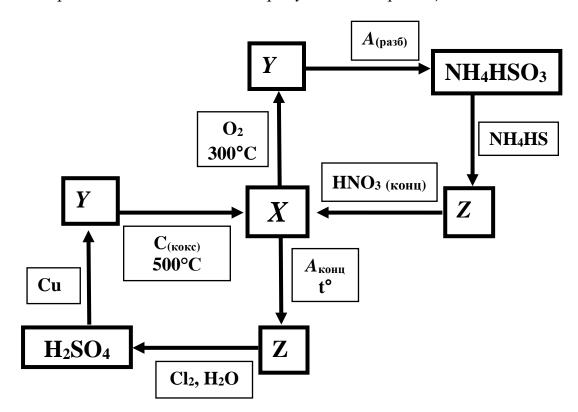
Вам предстоит выполнить теоретические (письменные) задания. Время выполнения заданий теоретического тура 5 академических часов (225 минут). Выполнение теоретических (письменных) заданий целесообразно организовать следующим образом:

- не спеша, внимательно прочитайте задание, осознайте суть вопросов и определите, наиболее верный и полный ответ;
- отвечая на теоретический вопрос, обдумайте и сформулируйте конкретный ответ только на поставленный вопрос;
- если Вы отвечаете на задание, связанное с заполнением таблицы или схемы, не старайтесь детализировать информацию, вписывайте только те сведения или данные, которые указаны в вопросе;
- особое внимание обратите на задания, в выполнении которых требуется выразить Ваше мнение с учетом анализа ситуации или поставленной проблемы. Внимательно и вдумчиво определите смысл вопроса и логику ответа (последовательность и точность изложения). Отвечая на вопрос, предлагайте свой вариант решения проблемы, при этом ответ должен быть кратким, но содержать всю необходимую информацию;
- после выполнения всех предложенных заданий еще раз удостоверьтесь в правильности выбранных Вами ответов и решений.

Выполнение заданий целесообразно организовать следующим образом:

- не спеша, внимательно прочитайте задание;
- выделите вопросы задания;
- запишите решение;
- продолжайте, таким образом, работу до завершения выполнения заданий;
- после выполнения всех предложенных заданий еще раз удостоверьтесь в правильности ваших ответов;
- если потребуется корректировка предложенного Вами решения, то неправильный ответ зачеркните, и напишите новый.

Предупреждаем Вас, что:


– при оценке заданий 0 баллов выставляется за неверное решение и в случае, если участником предложено несколько решений и хотя бы одно из них неверное. Задание теоретического тура считается выполненным, если Вы вовремя сдаете его членам жюри.

10 класс (вариант 1) Залачи

Задача 10.1.

Рассмотрите схему превращения веществ. Все зашифрованные вещества (X, Y, Z) содержат в своем составе один и тот же элемент Э. Над стрелками указаны реагенты, вступающие в реакцию с соответствующим зашифрованным веществом.

- 1. Укажите химические формулы зашифрованных веществ X, Y, Z и реагента A.
- 2. Напишите уравнения всех реакций, приведенных в схеме (каждая стрелочка одно уравнение), учитывая, что в реакциях может образовываться несколько продуктов, содержащих Э.

Максимальный балл -20.

Задача 10.2.

Два газообразных углеводорода **A** и **B**, которые являются ближайшими гомологами, смешали в объемном соотношении 4:1 и сожгли. Объем кислорода, который потребовался для сжигания смеси был в 3,3 раза больше объема смеси исходных углеводородов, а углекислого газа выделилось в 2,2 раза больше.

1) Проведите необходимые расчеты и определите формулы углеводородов.

- 2) Известно, что оба углеводорода могут подвергаться полимеризации. Напишите уравнения реакций получения полимеров из каждого углеводорода.
- 3) Один из полимеров имеет несколько разновидностей в зависимости от пространственного строения. Приведите их структурные формулы и названия.

Максимальный балл -20.

Задача 10.3.

«Не всё то золото, что блестит»

Людей во все времена притягивал безупречный вид, блеск, идеальные грани натуральных бриллиантов. Кто не мечтает иметь украшение с изящным крупным сверкающим драгоценным камнем? Но реальность такова, что далеко не каждому эта роскошь по карману. Однако наука не стоит на месте и в современном мире научились создавать камни, которые невооруженным глазом не отличить от натуральных. Один из таких искусственно получаемых минералов – фианит – был синтезирован в 1970 году советскими учеными.

Известно, что основным компонентом фианита является оксид (A) некоторого металла X, зачастую к основному компоненту добавляют другие оксиды:, . Оксид A, несмотря на достаточно высокую инертность, проявляет амфотерные свойства и растворяется в плавиковой кислоте с образованием соединения B (реакция 1), а также взаимодействует с расплавом гидроксида натрия (реакция 2), при этом образуется соль C. Простое вещество X - это серебристо-белый металл, является химически устойчивым во многих агрессивных средах. Однако относительно легко растворяется в царской водке (реакция 3), окисляясь до максимальной степени окисления, и переходит в соединение $D - H_n[XCl_m]$. Массовые доли водорода и хлора в D равны соответственно: 0.66% и 69.53%.

- 1. Назовите элемент X.
- 2. Запишите уравнения реакций 1-3.
- 3. Укажите все соединения A-D. Состав вещества D подтвердите расчётами.
- 4. Каково происхождение названия искусственного минерала «фианит»? Известно, что за границей такое название минерала почти не используют. Как называют этот минерал за рубежом?
- 5. Предположите, для чего в состав добавляют оксиды других металлов.

Задача 10.4.

Некоторая реакция

$$A + B = 2C$$

Проводилась при температуре 25⁰С и исходных концентрациях А и В равных 1 и 2 моль соответственно, продукт реакции отсутствовал. Через 5 мин после начала реакции концентрация вещества С равна 0,2 моль.

Выполните следующие задания:

- 1. Дайте определение понятию кинетическое уравнение и запишите его для данной реакции.
- 2. Определите скорость реакции в начальный момент времени и через 5 мин после начала, считая константу скорости равной 1 л/(моль мин).
- 3. Чему будет равна начальная скорость реакции, если изменить температуру на 20° . Температурный коэффициент Вант-Гоффа равен 3. Объясните, почему при увеличении температуры возрастает скорость реакции. Mаксимальный балл -20.

Задача 10.5.

В пяти пронумерованных пробирках находятся растворы солей $Zn(NO_3)_2$, Na_2SO_3 , $(NH_4)_2CO_3$, $MnSO_4$, $Al(NO_3)_3$. Для идентификации веществ предлагается следующий набор реактивов: NaOH, NaOH + H_2O_2 , $NH_3\cdot H_2O$, H_2SO_4 . Установите, позволит ли такой набор реактивов полностью идентифицировать растворы в пробирках.

Запишите уравнения химических реакций и укажите их признаки.

Максимальный балл -20.

Максимальный итоговый балл -100.

возрастная группа (11 классы) Уважаемый участник олимпиады!

Вам предстоит выполнить теоретические (письменные) задания. Время выполнения заданий теоретического тура 5 академических часов (225 минут). Выполнение теоретических (письменных) заданий целесообразно организовать следующим образом:

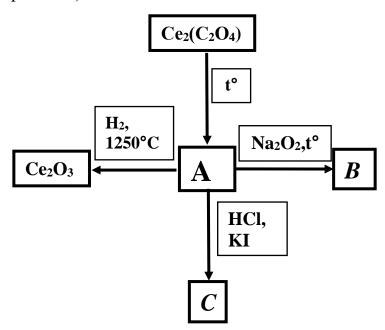
- не спеша, внимательно прочитайте задание, осознайте суть вопросов и определите, наиболее верный и полный ответ;
- отвечая на теоретический вопрос, обдумайте и сформулируйте конкретный ответ только на поставленный вопрос;
- если Вы отвечаете на задание, связанное с заполнением таблицы или схемы, не старайтесь детализировать информацию, вписывайте только те сведения или данные, которые указаны в вопросе;
- особое внимание обратите на задания, в выполнении которых требуется выразить Ваше мнение с учетом анализа ситуации или поставленной проблемы. Внимательно и вдумчиво определите смысл вопроса и логику ответа (последовательность и точность изложения). Отвечая на вопрос, предлагайте свой вариант решения проблемы, при этом ответ должен быть кратким, но содержать всю необходимую информацию;
- после выполнения всех предложенных заданий еще раз удостоверьтесь в правильности выбранных Вами ответов и решений.

Выполнение заданий целесообразно организовать следующим образом:

- не спеша, внимательно прочитайте задание;
- выделите вопросы задания;
- запишите решение;
- продолжайте, таким образом, работу до завершения выполнения заданий;
- после выполнения всех предложенных заданий еще раз удостоверьтесь в правильности ваших ответов;
- если потребуется корректировка предложенного Вами решения, то неправильный ответ зачеркните, и напишите новый.

Предупреждаем Вас, что:

– при оценке заданий 0 баллов выставляется за неверное решение и в случае, если участником предложено несколько решений и хотя бы одно из них неверное. Задание теоретического тура считается выполненным, если Вы вовремя сдаете его членам жюри.


11 класс (вариант 1) Задачи

Задача 11.1.

В семейство редкоземельных элементов (РЗЭ) в силу схожести химических свойств объединяют 16 элементов. К ним же относятся, например, лантан и церий. Все РЗЭ способны образовывать устойчивые соединения со степенью окисления +3. Однако для некоторых из них характерны и другие степени окисления, например церий легко образует соединения Ce⁺⁴.

Поясните, исходя из электронного строения атомов:

- 1. Почему лантаноиды вынесены в таблице Менделеева в отдельный ряд?
- 2. В чём причина различия возможных валентных состояний для Се и La. Запишите электронные конфигурации для этих атомов в основном состоянии.
 - 3. Какие именно элементы относят к РЗЭ.
- 4. Подтвердите способность церия проявлять разные степени окисления, на примере химических превращений, приведенных в схеме. Запишите все уравнения реакций и укажите химические формулы зашифрованных веществ (все они содержат Се).

5. Известно также, что в силу большой схожести химических свойств редкоземельных элементов, процесс их разделения значительно затруднен. Тем не менее, один из способов отделения церия от остальных РЗЭ основан на различии в рН осаждения соответствующих гидроксидов: рН осаждения гидроксида церия $CeO_2 \cdot xH_2O$ равен 1, а рН осаждения всех остальных гидроксидов лантаноидов (III) равнен 6,5.

Предложите способ отделения церия OT остальных лантаноилов (обозначим общим символом Ln^{3+}) из их щелочного раствора, имея в распоряжении кислород и разбавленную азотную кислоту. Опишите последовательность действий, попробуйте составить схему химических превращений.

Задача 11.2.

В современную медицину этот полимер пришел недавно и стал широко использоваться при приготовлении различных лекарственных средств. В последнее время он вызывает большой интерес ученых, как возможный синтетический биоматериал, который может использоваться в восстановлении и регенерации тканей и органов, исследователи относят его к перспективным материалам для изготовления протезов клапанов сердца. Этот полимер (E) может быть получен в предложенной схеме превращений:

$$A + B \xrightarrow{Hg^{2+}} C \xrightarrow{\text{полимеризация}} D \xrightarrow{H_2O, H^+} A + E \downarrow H_2O, \downarrow H^+$$
 $A + F$

- 1) Приведите уравнения всех предложенных в превращении реакций, используя структурные формулы органических веществ **A-F**. Если известно, что
- широко используемые в промышленности органические вещества ${\bf A}$ (жидкость при обычных условиях) и ${\bf B}$ (газ) имеют одинаковое количество атомов углерода;
 - полимер **D** используют для получения клея, водоэмульсионных красок;
 - при гидролизе соединения С образуется смесь продуктов А и F.

Установлено, что, как соединение ${\bf B}$, так и соединение ${\bf F}$ реагируют с гидроксидом диамминсеребра (I) (реактивом Толленса) в соотношении 1:2. При этом продукт, полученный из соединения ${\bf F}$ после подкисления, превращается в ${\bf A}$.

- 2) Назовите соединения **A**, **B**, **C**, **D**, **E**, **F**.
- 3) Напишите уравнения реакций **B** и **F** с гидроксидом диамминсеребра (I). Объясните образование из продукта окисления **F** соединения **A**.
 - 4) Полимер Е не имеет собственного мономера, почему?
- 5) При выдерживании в течение длительного времени или при криогенной обработке (замораживание-оттаивание) водных растворов полимера **E** происходит образование вязких гидрогелей. Выскажите свое предположение, почему полимер **E** проявляет такие свойства.

Максимальный балл -20.

Задача 11.3.

Органическое соединение A может взаимодействовать с раствором гидрокарбоната натрия с выделением газа, а при взаимодействии с гидроксидом кальция образует вещество B. Прокаливание вещества B при высокой температуре приводит к веществу C. Если соединение C нагревать с избытком хромовой смеси, то после окончания реакции в растворе можно обнаружить только исходное органическое соединение A, но, при этом количество его будет примерно в два раза меньше, чем было взято исходно. Таким образом, все описанные превращения можно повторять до тех пор, пока вещество A практически полностью не исчезнет.

- 1) Выскажите предположения о структуре вещества A, приведите объяснения. Дайте название вещества A по номенклатуре IUPAC, приведите тривиальное название.
- 2) Напишите уравнения всех описанных в задаче превращений, используя структурные формулы органических веществ.
 - 3) Назовите вещества В и С.
- 4) Приведите объяснения, почему исходного вещества **A** становится меньше в результате приведенной в задаче схемы превращений практически в два раза.

Максимальный балл -20.

Задача 11.4.

Энергия активации реакции

$$\mathbf{A} + \mathbf{B} = \mathbf{C} \tag{1}$$

в два раза больше, чем у реакции

$$\mathbf{C} + \mathbf{\Pi} = \mathbf{E} \tag{2}$$

Если в первой реакции изменить температуру от T_1 до T_2 константа скорости реакции возрастет в 4 раза.

Выполните следующие задания:

- 1. Дайте определение понятию константа скорости химической реакции, от чего она зависит.
- 2. Как изменится константа скорости второй реакции при изменении температуры аналогичном изменению в первой реакции.

Уравнение Аррениуса: $k = k_0 e^{-E_A/RT}$

где k_0 - предэкспоненциальный множитель (постоянная величина для данной реакции, не зависит от температуры); E_A - энергия активации; R=8,314 Дж/(моль:K) –универсальная газовая постоянная.

Максимальный балл -20.

Задача 11.5.

Навеску m вещества $Na_2B_4O_7\cdot 10H_2O$, взятую на аналитических весах (с точностью до пятого знака после запятой), растворили в воде.

При растворении тетрабората натрия (буры) протекает реакция гидролиза. Будем считать, что это соответствует следующему уравнению:

$$Na_2B_4O_7 + 5 H_2O = 2H_3BO_3 + 2 NaH_2BO_3$$

Раствор поделили на три части. Первая часть провзаимодействовала с 11,06 мл 0,02274 М HCl. Вторая часть провзаимодействовала с 11,5 мл 0,02171 М NaOH. Третья часть — с 1мл 0,5М раствора маннита (символическая химическая формула $R(OH)_2$). В случае первого взаимодействия выход продукта приближается к 100%.

- 1. Напишите уравнения реакций взаимодействия каждой части раствора тетрабората натрия с реагентом.
- 2. Рассчитайте массу буры в каждой из трех частей.
- 3. Определите величину навески *т*.